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Excitation of Higher Order Modes in Spherical Cavities

RABINDRA N. GHOSEf

Summary—An analysis for determining approximately the opti-
mum position of the exciting source inside a spherical cavity for
exciting any TE or TM mode is presented. For any TE or TM mode
the orientation of the exciting probe or loop is determined by maxi-
mizing the surface integral of H or line integral of A which is pro-
portional to the excitation coefficient for the corresponding mode.
Specific examples of mode discrimination by proper orientation of the
exciting source are also included in the paper. Besides, graphs of the
sutface integral of H and the line integral of A for various modes are
presented to indicate the variation of mutual inductance for any
mode, for different positions of the exciting source.

IGHER ORDER modes, that is, modes having
H resonant frequencies higher than that of the

dominant mode, can be excited in a resonant
cavity either by a magnetic loop or by a short antenna
or even by an aperture coupling. In general, in order to
excite a cavity for any particular mode by a magnetic
loop the plane of the loop is placed normal to the mag-
netic lines for the corresponding mode and preferably at
a region where the magnetic lines are dense. Similarly,
in order to excite a cavity for any desired mode with a
short antenna, the axis of the antenna is placed parallel
to the electric lines for the corresponding mode. The
problem of excitation of a cavity by a circular or linear
slit or aperture can be considered as a dual problem of
exciting the cavity by a loop or as a short antenna,
where the excited electric and magnetic fields are
interchanged.

Theoretically, an infinite number of modes can be
excited by a magnetic loop and a short antenna. How-
ever, for a practical purpose it is often desirable to
energize a cavity for a particular mode and to optimize
the excitation for that mode by suitably orienting the
exciting source.

The problem of orientation of the source to obtain
optimum excitation for a desired higher order mode in
case of rectangular and cylindrical cavities is rather
straightforward. Often determining the location of the
source becomes obvious from the field configuration of
the desired mode. In a spherical cavity, however, the
field configurations are a little more complex, and
further insight into the field distribution becomes de-
sirable. In the present paper, attempts have been made
to present an analytical treatment of the excitation
problem to indicate how the exciting source should be
oriented in order to obtain an optimum excitation for
any desired higher order mode in spherical cavities.
Specific examples are shown to indicate the nature of
discrimination between the desired and undesired
modes when the desired mode is optimized.

* Manuscript received by the PGMTT, April 6, 1956.
1 Ramo-Wooldridge Corp., Los Angeles, Calif., formerly with
RCA Victor Division, Camden, N. J.

ExcrraTioNn BY A MAGNETIC LooP

Let a small wire loop carrying a uniform current be
enclosed in a cavity to energize it. Following the method
introduced by Condon? it is often convenient to assume
that the total magnetic potential 4 can be expanded in
terms of arbitrary orthogonal modes such that

A, 1) = X DO )
and
fff A, A(S)dV =0 for n#m
v
=V for n=m (2)

where Ax(S) is the resonant wave pattern of the mag-
netic potential for the kth mode and is a function of
space alone, T1(¢) is the corresponding time function, V'
is the volume of the enclosure, and &, n, m are integers.
Similarly, one can also assume that the time and the
space distribution of the exciting current can be ex-
panded in terms of 7;(t) and A4(S), that is,

i(S, 1) = 22 I Ax(S). 3)
k=0
The coefficients 7,(f) can now be evaluated by using
the orthogonality property assumed in (2).

It = ivfff AS)i(3, Hdv. 4

It can be shown! that {or a short magnetic loop in
which the current is confined to a wire of small cross-
sectional area

I
Ii(t) = 7 M, (5)

where M is the flux through the current carrying loop
caused by unit amplitude of excitation of the kth mode.
Therefore M is the mutual inductance between the ex-
citing loop and the cavity for the kth mode.

The excitation coefficients for any mode can now be
determined in terms of this mutual inductance, from the
following differential equation derived from Maxwell's
equation and (2) and (3).

. Wg - 1
Fod LTt —[82T5 — L] = 0 )
Ox pe

where p and e are permeability and dielectric constants
of free space respectively,

tE. U. Condon, “Forced oscillations in cavity resonators,” J.
Appl. Phys., vol. 12, pp. 129-132; February, 1941.
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wr =27 Xresonant frequency for the kth mode

6}G = 271'/)\]‘-

A =resonant wavelength for the kth mode

Qi =resonant Q of the cavity for the kth mode.

If a time variation of e®* is assumed such that
Ty=Te™t

Twwy I
_ wZTk + T]; + wsz]y = ¢2— Mk (7)
B 14
At resonance
o I Mka
| Tk *w-»wk = ¢ "f/_ wkz (8)

From (5)

1 _
M= f f H1dS )

where H;, is the magnetic field intensity for the kth
mode normal to differential area ds on the plane of the
current loop.

For any particular cavity, Qs, wi, etc. corresponding
to the kth mode are usually fixed and hence

e

N being a constant. Thus, the excitation for the kth
mode can be optimized by making the surface integral in
(10) meximum.

(10)

ExciTtaTiON BY A PROBE

With the probe or electric coupling one can no longer
assume that the resonator is charge free, and hence the
introduction of both scalar and vector potential will be
necessary to describe the entire electromagnetic field.
Thus,

E=—ud — grad @ (1)
where ® is the scalar potential function.
Substitution in Maxwell’'s equation gives
d —
—u—div4d — V2® = p/e
at
VXV XA+ ued = ils, 1) — e grad &. (12)

f [4(5, ) —e grad $] is expanded such that

> 1A

k=0

[4(3, £) — egrad P =

the expression for I.(¢) corresponding to (4) becomes

o= %ffj;[i(s, ) — egrad ®[TudV.  (13)

The contribution® due to the integral involving the dis-
placement current vanishes, and so I;(f) remains same
as that in (4).
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I r_
I.() = ——fA;c-a’S (14)
14
, f A,-dS
Tk = 62—— ;
14 1w
- 2]
Qle
At resonance
‘ka'dS‘
(Tl =¢t & (15)

which implies that T'; can be optimized by maximizing
the integral,

Loor CoUPLING IN SPHERICAL CAVITY

Let it be assumed that a spherical cavity is to be ex-
cited for a given TE mode by a loop. One may ask
whether there is any optimum position at which the loop
can be placed in order to obtain maximum excitation
for the mode under consideration and if so how to deter-
mine this position.

For TE spherical modes E, =0, and the amplitude of
the radial magnetic field is maximum near the axis ¢ =0.
Hence, it will be desirable to place the plane of the loop
perpendicular to this axis for the corresponding mode.
Let the coordinates of the center of the loop as shown
in Fig. 1 be (a, 0, 0, ), and let @ and § be the radii of the
sphere and the loop respectively.

The magnetic field equations? corresponding to any
TE n, m, 0 mode are

H, = i(n-+ Duk, ———I:]n(ﬁ )J P,(cos B)ew?
Wit 8
i,ﬂkn 0
Hy = ! f) — ——— i (
= m P,/ (cos ) & a0 [877.(87) Jei=t  (16)
H¢ = O.

where &, is proportional to the nth-mode amplitude.
From (14), it appears that the excitation for #th mode
can be optimized by maximizing

f TS,
N

But as symmetry in the ¢ direction is assumed

3
f f T,dS = 21 f Tonpdp
8 Y]

where T, is the magnetic intensity for the #th mode
normal to the loop. From Fig. 1, p=« tan 8; v’ =a/cos 8

?J. A, Stratton, “Electromagnetic Theory,” McGraw-Hill Book
Co., Inc., New York N. Y.; 1941. The units are in unrationalized
mks system which should not make any difference for the purpose
of this analysis. .
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Fig. 1—Excitation of a spherical cavity by a loop.

— 8 2ra
ff H,.dS = i(n? + n)k, — —
s wp B
(e
0 I cos 6

6o = tan—! §/a.

"0
)

si
cos?

) P,(cosd)

where

Expanding P, (cos ) and interchanging the order of
integration and summation one obtains

f f H,ndS

o & 1

(=D7T @ — p+ $2w

= 12kn— (n® 4+ n)
wn ZD Tor—2p 4 Dl
0 Ba
. f Jn <——> (cos 6)"2r~2 gin 6d9 (18)
0 cos 6
where
7
{t = — for n even
2
nw—1
= for #n odd.
2
But
_(Ba) /‘/WCOSHJ (Ba)
In cos 8 B 2Ba e cos §
o nt+2q
= /m(—1 (7)
=3 Vi 1) (cos 0)—724,

=0 2:q'T(q + n + 3/2)

Januvary

Substituting this expression for j,(8a/cos 8) in (18) and
evaluating the integral one obtains

‘ f f Smndsl |

= bt 2

o n+2q
PV ~1>4<7)
pvE )

a=0 2q! T(g+n-+ 3/2)

(=D)70(n — p+ 1/2)2720
pIT( — 2p 4+ 1)

1 §2\ ¢+rt1/2
N PE— { i e -1z |- 19
Lottt )l @
If
ol 4B a(Ba)

where A is the area of the loop.
The condition for maximum excitation?® is obtained by
solving the following equation for «

o —
[ff H,mdS:I =0 (21)
8(Bex) s
which yields the transcendental equation
o =mn ———_]n(ﬁa) (22)
Jnt1(Be)

It should be noted that (22) shows the optimum posi-
tion for the loop to obtain maximum excitation for the
nth mode, for m=1, provided 7,(8a) 0 when « is non
zero. This exception is seen to be obvious from (20) since
the excitation approaches zero at the “zeros” of j,(8a).
Because of symmetry it will be desirable to place similar
loop or loops at the corresponding positions where m > 1.

Let the case of exciting the dominant mode be consid-
ered as an example. From (16) one finds that the first
resonance occurs at

tan Ba = Ba
Ba = 4.493,

The condition for the maximum excitation of the domi-
nant mode is obtained from (22), which, for TE; ¢
mode,* yields a8 =0.

In order to observe the nature of discrimination
against undesired modes when the desired mode is
optimized, the relative variation of |[[H,.dS | for
various positions of the exciting source and for different
modes are shown in Fig. 2. It appears that if it is de-
sired to excite the dominant mode in a spherical cavity,

3 If & is not too small in comparison with « the condition of maxi-
mum excitation is obtained by differentiating (19) directly with re-
spect to « and setting the result equal to zero.

¢ From (20) it may appear that this solution is not permissible as
<K and a =0, also §>0. But from the original equation for the mag-
_neticlﬁgld intensityas shown in (16) it can be shown that this solution
is valid.
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Fig. 2—Relative variation of [/H,.dS for various positions of
the loop and for different TE modes.

the best position at which the exciting loop can be placed
is at the center of the sphere. An analysis for the ex-
citation of the dominant mode in a spherical cavity by a
loop placed at the center of the sphere has been made
by Schelkunoff.?

Similarly when it is desired to optimize TE 51,y mode,
the transcendental (22) yields a numerical solution

Ba = 2.5.

It can be seen that considerable discriminations can be
made against the undesired modes when B« is chosen
equal to 2.5 for TE,,1,0 mode. The optimum positions
of the loop for other modes can be determined similarly.
The surface integral [[H,.dS when divided by T, as
shown in (9) vields the mutual inductance for the nth
mode. Thus Fig. 2 may be helpful to evaluate the mutual
inductance of any mode for different positions of the
loop at any frequency.

It may be remarked here that in the preceding anal-
vsis, the effect of distortion of the field due to the loop
has been neglected. Furthermore, the loop has to be sup-
ported in the desired position inside the cavity by some
means which may cause distortion. However, if § is made
reasonably small as is assumed in the analysis and the
loop is supported by means of two parallel wires spaced
very close to each other, the wave patterns will not
change appreciably. If the total distortionless field com-
ponents say H, due to all the modes is represented as

g L(B)ju(Br) [ Palcos 0)

the distorted field under the above said conditions may
be represented as

_ g Wt +”) [(8r)7u(Br) | Pucos 0)

8 S. A. Schelkunoft, “Electromagnetic Waves,” D. Van Nostrand

Co., Inc., New York, N. Y., p. 298; January, 1956.
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where
a, # d,.

This inequality, however, will not affect the analysis
for the optimization of the coupling for any mode con-
sidered independently.

ExcitatioNn oF HigueErR OrRDER TRANS-
VERSE MacGNETIC MODES

For transverse magnetic modes H,=0, and the loop
excitation as described in the preceding section can no
longer be used to excite higher order TM modes in the
spherical cavity. A short antenna or probe (Fig. 3}, in-
troduced through the periphery of the sphere radially
at ¢ =0, can be used, however, to excite spherical TM
modes.

Fig. 3—Excitation of a spherical cavity by a probe.

For probe excitation as discussed in the previous sec-
tion one finds

E= —,uZ'——grad@.
When a time variation of e®! is assumed
_ T
A = — [E + grad &]. (23)
wph

If the depth of penetration is the only variable to cause
any change in the excitation Tk, [A; dS becomes maxi-

mum when
ga ;5
f ,/n(67’> d(ﬁ?’) _ kun-a'r
BX, Br

is maximum, K being a constant.
As the integral exists everywhere in the interval
[Ba, BX,], the integral can be expressed as

(24)

I = F(Ba) — F(BXo)

=[50

(25)

where
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In order to determine optimum depth of penetration
which will optimize the line integral of 4,, one can set

I
X,

0 (26)

and obtain a solution for X, which will yield a maximum
value of the integral I. From (25) and (26) it will appear
that [A#n-dS is maximum when

jn(BXo) = Q.

Fig. 4 shows the relative variation of [4;-dS for
k=1, 2, which correspond to TM;,1,0, and TM, 1, modes,
when the cavity is designed for TM;y0 resonance which
occurs at

(27)

Ba = 2-74.

It may be remarked that Fig. 4 not only indicates the
nature of discrimination against undesired TM,1,¢
mode, but also shows the variation of the mutual in-
ductance for TM;,1,0 and TM,;,, modes for different
probe lengths.

It is obvious that for any mode, Xo=0, which corre-
sponds to a probe length equal to the radius of the
sphere, is a solution of (26). In fact, for any mode such
as the dominant mode where no zero of 7,(8X,) exists
between Ba and 0, the probe has to be extended up to
the center of the sphere in order to obtain the maximum
excitation. However, the probe length can be reduced
for any higher order mode (#>1) if the root of (27) be
such that Ba>BX,>0. Under these circumstances it will
not only be desirable but also necessary to extend the
probe up to Xo3%0, in order to avoid simultaneous exci-
tation of the undesired modes.

It should be noted that the distortion of the wave
pattern of the field components has not been considered
in the present analysis. Thus the solution of the problem
so obtained is an approximate one, and it approaches
the true solution when the probe is made infinitely thin.
The field distortion due to relative change in amplitude
of the different mode components, however, will not
affect the analysis for the optimization of the excitation
coefficient as stated before.
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Fig. 4—Relative variation of f4xdsS for different probe length
when the cavity is designed for TM;y; mode.

CoNCLUSION

A theoretical analysis for the excitation of higher
order TE and TM modes in a spherical cavity is pre-
sented to indicate the optimum orientation of the loop
or probe so as to obtain maximum excitation for any
desired mode. A general expression for the position of a
magnetic loop which can be used to excite any particular
radial TE mode in a spherical cavity is found so that
the excitation of the cavity for this particular mode be-
comes maximum at the corresponding position. Simi-
larly, an expression for the probe length, in case of an
antenna coupling, which will yield optimum excitation
for any desired TM mode, is obtained. Although the
problem of excitation of higher order modes in the
spherical cavity alone has been discussed in the present
paper, the basic principles can easily be extended to the
problems of optimum excitation in rectangular, cylindri-
cal, and elliptical cavities.



