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of Higher Order Modes in Spherical Cavities*
RABINDRA

Summary—An analysis for determining approximately the opti-

mum position of the exciting source inside a spherical cavity for

exciting any TE or TM mode is presented. For any TE or TM mode

the orientation of the exciting probe or loop is determined by maxi-

mizing the surface integral of ~ or line integral of I which is pro-

portional to the excitation coefficient for the corresponding mode.

Specific examples of mode discrimination by proper orientation of the

exciting source are also included in the paper. Besides, graphs of the

surface integral of ~ and the line integral of ~ for various modes are

presented to indicate the variation of mutual inductance for any

mode, for different positions of the exciting source.

H
IGHER ORDER modes, that is, modes having

resonant frequencies higher than that of the

dominant mode, can be excited in a resonant

cavity either by a magnetic loop or by a short antenna

or even by an aperture coupling. In general, in order to

excite a cavity for any particular mode by a magnetic

loop the plane of the loop is placed normal to the mag-

netic lines for the corresponding mode and preferably at

a region where the magnetic lines are dense. Similarly,

in order to excite a cavity for any desired mode with a

short antenna, the axis of the antenna is placed parallel

to the electric lines for the corresponding mode. The

problem of excitation of a cavity by a circular or linear

slit or aperture can be considered as a dual problem of

exciting the cavity by a loop or as a short antenna,

where the excited electric and magnetic fields are

interchanged.

Theoretically, an infinite number of modes can be

excited by a magnetic loop and a short antenna. How-

ever, for a practical purpose it is often desirable to

energize a cavity for a particular mode and to optimize

the excitation for that mode by suitably orienting the

exciting source.

The problem of orientation of the source to obtain

optimum excitation for a desired higher order mode in

case of rectangular and cylindrical cavities is rather

straightforward. Often determining the location of the

source becomes obvious from the field configuration of

the desired mode. In a spherical cavity, however, the

field configurations are a little more complex, and

further insight into the field distribution becomes de-

sirable. In the present paper, attempts have been made

to present an analytical treatment of the excitation

problem to indicate how the exciting source should be

oriented in order to obtain an optimum excitation for

any desired higher order mode in spherical cavities.

Specific examples are shown to indicate the nature of

discrimination between the desired and undesired

modes when the desired mode is optimized.
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EXCITATION BY A MAGNETIC LooP

Let a small wire loop carrying a uniform current be

enclosed in a cavity to energize it. Following the method

introduced by Condonl it is often convenient to assume

that the total magnetic potential ~ can be expanded in

terms of arbitrary orthogonal modes such that

Z(3, f) = ~ z,(s) T,(t) (1)
!+=0

and

Sss
X.(3)Z..Z(S) dl’ = O for 72 # w

v

=V for n=m (2)

where ~~(~) is the resonant wave pattern of the mag-

netic potential for the kth mode and is a function of

space alone, T~(t) is the corresponding time function, V

is the volume of the enclosure, and k, n, m are integers.

Similarly, one can also assume that the time and the

space distribution of the exciting current can be ex-

p-anded in terms of Zk(t) and ~~(~~, that is,

i(s, t) = jj Ik(t)zk(s) .
k=o

The coefficients Ik(t)can now be evaluated

the orthogonality property assumed in (2).

(3)

by using

(4)

It can be shownl that for a short magnetic loop in

which the current is confined to a wire of small cross-

sectional area

where lf~ is the flux through the current carrying loop

caused by unit amplitude of excitation of the kth mode.

Therefore il~~ is the mutual inductance between the ex-

citing loop and the cavity for the kth mode.

The excitation coefficients for any mode can now be

determined in terms of this mutual inductance, from the

following differential equation derived from Maxwell’s

equation and (2) and (3).

where p and c are permeability and dielectric constants

of free space respectively,

1 E. U. Condon, “Forced oscillations in cavity resonators, ” Y.
Appl. Phys., vol. 12, pp. 129-132; February, 1941.
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~k = 2T Xresonant frequency for the kth mode

(3, = 27r/A,

~k = ::esonant wavelength for the kth mode

Qk = resonant Q of the cavity for the kth mode.

If a time variation of e;o’ is assumed such that

T~ = TAe$wt

iwuk

— co2Th+ — Tl, + u~2T1.= Cz; AIfi.
Q~

(7)

At resonance

From (5)

I M7,QL
T~\...k = C2— —.

v W7,2

ikfk = -T;L/ZI,,,dS
s

(8)

(9)

where :~k. is the magnetic field intensity for the kth

mode normal to differential area ds on the plane of the

current loop.

For any particular CZLVity, Qk, &)h, etc. COITeSpOlldkg

to the kth mode are usually fixed and hence

TL=N m ~k.ds (lo)

N being a constant. Thus, the excitation for the kth

mode can be optimized by making the surface integral in

(10) maximum.

EXCITATION BY A PROBE

With the probe or electric coupling one can no longer

assume that the resonator is charge free, and hence the

introduction of both scalar and vector potential will be

necessary to describe the entire electromagnetic field.

Thus,

~=–p~–grad~ (11)

where @ is the scalar potential function.

Substitution in Maxwell’s equation gives

If [;(s, I) – ~ grad &] is expanded such that

the expression for Ik(t) corresponding to (4) becomes

1
Ik=— S“u[i(s, t) – c grad &]Z~dV. (13)

v v

The contribution due to the integral involving the dis-

placement current vanishes, and so l~(t) remains same

as that in (4).

Th=cz;

At resonance

19

(14)

which implies that Tk can be optimized by lmaximi zing

the integral.

LooP COUPLING IN SPHERICAL CAVITY

Let it be assumed that a spherical cavity is to be ex-

cited for a given TE mode by a loop. One may ask

whether there is any optimum position at which the 1oop

can be placed in order to obtain maximum excitation

for the mode under consideration and if so hc)w to deter-

mine this position.

For TE spherical modes E,= O, and the amplitude of

the radial magnetic field is maximum near the axis@= O.

Hence, it will be desirable to place the plane of the loop

perpendicular to this axis for the corresponding mode.

Let the coordinates of the center of the IIoop as shown

in Fig. 1 be (a, O, 0, ), and let a and 6 be the radii of the

sphere and the loop respectively.

The magnetic field equations2 corresponding to any

TE n, m, o mode are

H+ = O.

where k. is proportional to the nth-mode amplitude.

From (14), it appears that the excitation for nth mode

can be optimized by maximizing

But as symmetry in the+ direction is assumed

J’.f sCr

~nndS = 27r ~nnpdp
s o

where Z?nn is the magnetic intensity for the nth mode

normal to the loop. From Fig. 1, p =a tan O; ~{’ =a/cDs O

2 J. A. Stratton, “Electromagnetic Theory, ” M&raw.Hill ]~)ook
Co., Inc., New York, N. Y.; 1941. The units are in unrationalized
mks system which should not make any ddference for the purpose
of this analysis.
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I
Fig. l—Excitation of a spherical cavity by a loop.

where

6~ = tan–l 6/a,

Expanding P. (COS8) and interchanging the order of

integration and summation one obtains

L(’~..dS

t 1 (–l)w172 – p + *)2~-’P
. i2kn=~ — (rz2+ n)

w 2=0 r(l/2) r(n – 2p + l)p!

‘~’”,.(~) (COS 6) “-2 P-2 sin 9d6

where

t=: for fz even

n—1
= — for n odd.

2

But

(18)

Substituting this expression for jn(@/cos d) in (18) and

evaluating the integral one obtains

1 (– l)r’r(n – p + 1/2) 2”-’~
—— kn(fz’ + r’z) ~ i —

@p @ r(l/2) p!r(f~ – 2p+ 1)

()

pa .+2,

& v’; (–1)’ T

“[,+ P’+1/2{(1+3+’+’’2- 1}l”
(19)

If

where A is the area of the loop.

The condition for maximum excitation is obtained by

solving the following equation for a

asss=’s]‘0
which yields the transcendental equation

*D= ,,A(M
jn+l(~ff)

(21)

(22)

It should be noted that (22) shows the optimum posi-

tion for the loop to obtain maximum excitation for the

nth mode, for m = 1, provided jn(/3a) #O when a is non

zero. This exception is seen to be obvious from (20) since

the excitation approaches zero at the “zeros” of j.(@).

Because of symmetry it will be desirable to place similar

loop or loops at the corresponding positions where m >1.

Let the case of exciting the dominant mode be consid-

ered as an example. From (16) one finds that the first

resonance occurs at

tan ~a = @a

fia = 4.493.

The condition for the maximum excitation of the domi-

nant mode is obtained from (22), which, for TEI,I, O

mode,4 yields C@= O.

In order to observe the nature of discrimination

against undesired modes when the desired mode is

optimized, the relative variation of I j@.JSl for

various positions of the exciting source and for different

modes are shown in Fig. 2. It appears that if it is de-

sired to excite the dominant mode in a spherical cavity,

3 If ~ is not too small in comparison with a the condition of maxi-
mum excitation is obtained by differentiating (19) directly with re-
spect to a and setting the result equal to zero.

g From (20) it may appear that this solution is not permissible as
8<<a and ~ = O, also 8>0. But from the original equation for the mag-
netic field mtensit y as shown in (16) it can be shown that this soln’rion
is valid.



1957 Ghose: Excitation of Higher Order Modes in Spherical Cavities

I I
I

II
where

0

Fig.

1 2 3

/9< —

2—Relative ~,ariatiou of /JH..dS for various positions of
the loop and for different TE modes.

the best position at which the exciting loop can be placed

is at the center of the sphere. An analysis for the ex-

citation of the dominant mode in a spherical cavity by a

loop placed at the center of the sphere has been made

by Schelkunoff.5

Similarly when it is desired to optimize TE Z,l,o mode,

the transcendental (22) yields a numerical solution

fia = 2.5.

It can be seen that considerable discriminations can be

made against the undesired modes when @J is chosen

equal to 2.5 for TEZ,I,O mode, The optimum positions

of the loop for other modes can be determined similarly.

The surface integral ~~~n,,dS when divicied by T., as
shown in (9) yields the mutual inductance for the nth

mode. Thus Fig. 2 may be helpful to evaluate the mutual

inductance of any mode for different positions of the

loop at any frequency.

It may be remarked here that in the preceding anal-

ysis, the effect of distortion of the field due to the loop

has been neglected. Furthermore, the loop has to be sup-

ported in the desired position inside the cavity by some

means which may cause distortion. However, if 8 is made

reasonably small as is assumed in the analysis and the

loop is supported by means of two parallel wires spaced

very c1ose to each other, the wave patterns will not

change appreciably. If the total distortionless field com-

ponents say H, due to all the modes is represented as

(n’ + ?Z)
13, = ~ an

(3’$”

the distorted field under the

be represented as

[(P~)&(Df)l~n(cos @

above said conditions may

[(@’)L(6~) l~n(cos e)

5 S. A. Schelkuuoff, “Electromagnetic I~7aves, ” D. Van Nostrand
Co., Inc., New York, N. Y., p. 298; January, 1956.

This inequality, however, will not affect the analysis

for the optimization of the coupling for any mode con-

sidered independently.

EXCITATION OF HIGHER ORDER ‘l’RANS-

V~RSE MAGNETIC MODES

For transverse magnetic modes H,= O, and the loop

excitation as described in the preceding section can no

longer be used to excite higher order TM modes in the

spherical cavity. A short antenna or probe (Fig. 3), in-

troduced through the periphery of the sphere radially

at ~ =0, can be used, however, to excite spherical TN’f

modes.

&

—.
-/[;)—-c ..—_ .
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, (o, 0,%)

x. ---q

/

Fig. 3—Excitation of a spherical cavity by a probe.

For probe excitation as discussed in the previous sec-

tion one finds

~=–p~– grad+.

When a time variation of eiu’ is assumed

Z = ~ [Z+ grad o]. (23)
UP

If the depth of penetration is the only variable to cause

any change in the excitation Th, ~~k dS ‘becomes maxi-

mum when

s@aj.(pr)
— d(&’) = ksZ,J.a’r

&Y, 8?’
(24)

is maximum, h7 being a constant.

As the integral exists everywhere in the interval

[&z, f?XO], the integral can be expressed as

I = F(~a) – F((3XO) (25)

where

‘(x)=[s?“l,=..
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In order to determine optimum depth of penetration

which will optimize the line integral of Z., one can set

dI
—=0
dXO

(26)

and obtain a solution for XO which will yield a maximum

value of the integral 1. From (25) and (26) it will appear

that fln ~dS is maximum when

j.(sxll) = o. (27)

Fig. 4 shows the relative variation of fA ~.dS for

k =1, 2, which correspond to TM1,l,O, and TM1,I,O modes,

when the cavity is designed for TM11o resonance which

occurs at

Da= 2.74.

It may be remarked that Fig. 4 not only indicates the

nature of discrimination against undesired TMa,l,0

mode, but also shows the variation of the mutual in-

ductance for TMI,1,0 and TM Z,I,0 modes for different

probe lengths.

It is obvious that for any mode, XO = O, which corre-

sponds to a probe length equal to the radius of the

sphere, is a solution of (26). In fact, for any mode such

as the dominant mode where no zero of j.(flXo) exists

between @a and O, the probe has to be extended up to

the center of the sphere in order to obtain the maximum

excitation. However, the probe length can be reduced

for any higher order mode (n> 1) if the root of (27) be

such that ~a > /3X. >0. Under these circumstances it will

not only be desirable but also necessary to extend the

probe up to XO # O, in order to avoid simultaneous exci-

tation of the undesired modes.

It should be noted that the distortion of the wave

pattern of the field components has not been considered

in the present analysis. Thus the solution of the problem

so obtained is an approximate one, and it approaches

the true solution when the probe is made infinitely thin.

The field distortion due to relative change in amplitude

of the different mode components, however, will not

affect the analysis for the optimization of the excitation

coefficient as stated before.

2

0

Fig,
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4—Relative variation of fAKdS for different probe length
when the cavity is designed for TMIIO mode.

CONCLUSION

A theoretical analysis for the excitation of higher

order TE and TM modes in a spherical cavity is pre-

sented to indicate the optimum orientation of the loop

or probe so as to obtain maximum excitation for any

desired mode. A general expression for the position of a

magnetic loop which can be used to excite any particular

radial TE mode in a spherical cavity is found so that

the excitation of the cavity for this particular mode be-

comes maximum at the corresponding position. Simi-

larly, an expression for the probe length, in case of an

antenna coupling, which will yield optimum excitation

for any desired TM mode, is ,obtained. Although the

problem of excitation of higher order modes in the

spherical cavity alone has been discussed in the present

paper, the basic principles can easily be extended to the

problems of optimum excitation in rectangular, cylindri-

cal, and elliptical cavities.


